Arduino環境でPico Bit RP2040を使う

コンピュータ、組み込み

小型のRP2040搭載基板 Pico Bit RP2040を入手しました。
WaveShareのRP2040-Zeroとの比較をしてみます。
Arduino環境でのセットアップと、基本的な入出力、通信(UART, I2C, SPI)を使ってみます。

紹介するもの

Pico Bit RP2040

特徴

とても小型の基板で、WaveShareのRP2040-Zeroと互換があります。
現在[Apr/2023]は、Ali Expressのみで販売を確認しています。

Pico Bit RP2040RP2040-Zero
接続Type CType C
フラッシュMemory2MB2MB
GPIO20( + 背面パッドパターン 9)
15(サイドエッジのみ) ※1
20( + 背面パッドパターン 9)
15(サイドエッジのみ) ※1
ロジックレベル3.3V3.3V
ADC44
UART22
I2C22
SPI22
ボタンBOOT
RESET
BOOT
RESET
LEDGPIO16(WS2812)GPIO16(WS2812)(GP23)
※1 サイドエッジは基板の長手方向のみに使用できるGPIOピンのことを指しています。
  ブレッドボードをピンヘッダで使用することを前提にしています。

RP2040-Zeroの記事

その他のRP2040搭載基板の記事

ピン配置

外観

RP2040搭載の他の小型基板と外観の比較をします。
画像は左から TINY2040, RP2040-Zero, Pico Bit RP2040, XIAO RP2040です。
最小サイズは、一番右のXIAO RP2040で使用できるピン数も少ないです。
最大サイズは、RP2040-ZeroとPico Bit RP2040で差はほとんどありません。

RP2040-Zero(画像左)とPico Bit RP2040(画像右)の背面を比較します。
差異としてはRP2040-Zeroと比較するとパッドパターンの間隔が広いです。

Pico Bit RP2040ではGPIOのパターンは基板サイドエッジまで伸びていないので使用できません。

使ってみて

WaveShareのRP2040-Zeroと互換があるので置き換えとして考えた場合、価格面では同等でも扱う店舗が少ないため入手性が悪いので無理に探してまで実施する必要は低そうです。

ユーティリティもボタンの配置、GPIOのシルク表示ともに差異といえるほどもないので基板の色違いのモデルぐらいの感覚です。

背面のGPIOパッドパターンの間隔が広くなっています。
こちらを使用する場合間隔の広いモデルが増えたと考えればよいと思います。
基板のサイドエッジのパッドパターンを使用する用途の場合は使用できません。

RP2040搭載小型基板の記事

準備

基板の初期化

1.Pico Bit RP2040のBOOT SELボタンを押しながら、USBケーブルをパソコンに接続します。

2.パソコンの画面では、Pico Bit RP2040 をストレージとして認識します。

3.UF2ファイルを以下のサイトからダウンロードします。

circuit python UF2 Download

4.ダウンロードしたファイル[adafruit-circuitpython-raspberry_pi_pico-ja-7.3.0.uf2]※をストレージ認識したPico Bit RP2040にドラッグ&ドロップする。

以上の作業でPico Bit RP2040 はCOM認識されます。

今回ダウンロードしたuf2ファイルは、保存しておいてください。
Pico Bit RP2040を初期化したいとき(今何のファームウエアが書かれているかわからなくなったとき)には、BOOTSELボタンを押しながら再起動することで、やり直しができます。

※2022/Jun 時点ではVersion 7.3.0

ライブラリ

ボードライブラリ

Arduino IDEのボードマネージャからPico Bit RP2040用のライブラリのインストールとボードの選択をします。

追加のボードマネージャのURLhttps://github.com/earlephilhower/arduino-pico/releases/download/global/package_rp2040_index.json
検索RP2040
ボードライブラリRaspberry Pi RP2040 Boards(x.x.x)※
選択するボードRaspberry Pi RP2040 Boards(x.x.x) > Generic RP2040
※動作確認はバージョン 3.1.1です

モジュールライブラリ

モジュールを使用しない場合インストールの必要はありません。

機能/モジュールライブラリ名検索確認時のバージョン
SSD1306Adafruit SSD1306 by AdafruitSSD13062.5.1
ST7735Adafruit ST7735 and ST7789
Library by Adafruit
ST77351.9.3
関連
SSD1306
ST7735
Adafruit GFX Library by AdafruitGFX1.11.3
WS2812Adafruit NeoPixel AdafruitNEOPIXEL1.10.5

基本スケッチ

タクトスイッチとLED点灯

説明

タクトスイッチを押下している間LEDは点灯します。
タクトスイッチを離すとLEDは消灯します。

配線

3.3V -> タクトボタン -> GPIO28
GPIO0 -> 保護抵抗(200Ω) -> LED -> GND

スケッチ
/**********************************************************************
【ライセンスについて】
Copyright(c) 2022 by tamanegi
Released under the MIT license
'http://tamanegi.digick.jp/about-licence/

【マイコン基板】
Pico Bit RP2040

【スケッチの説明】
タクトボタンとLEDの組み合わせの動作をします。

タクトボタンはPULLDOWN設定します。(押下したらHIGH)
タクトボタンを読み取り、押下されるとLEDが点灯します。
ボタンが離されるとLEDは消灯します。

【ライブラリ】
Raspberry Pi Pico / RP2040 > Generic RP2040

【準備】
3.3V -> タクトボタン -> GPIO28
GPIO0 -> 保護抵抗(200Ω) -> LED -> GND

【バージョン情報】
2023/4/30 : 新規
**********************************************************************/

#define LED 0        //LED用 GPIO番号
#define BUTTON 28    //タクトスイッチ

void setup()
{
  pinMode(LED, OUTPUT);               //ピン出力設定
  pinMode(BUTTON, INPUT_PULLDOWN);    //プルダウンで入力
}

void loop()
{
  int iStat = digitalRead(BUTTON);
  digitalWrite(LED, iStat);           //ボタンの状態をLEDに出力
}
結果

ボタンを押下することでLEDが点灯しました。
ボタンを離すとLEDは消灯しました。

PWM

説明

PWMを使ってLEDのフェード点灯(ゆっくり点灯させる)を行います。
基板実装LEDではPWMが使用できないので、GPIO0を使用します。

スケッチ
/**********************************************************************
【ライセンスについて】
Copyright(c) 2022 by tamanegi
Released under the MIT license
'http://tamanegi.digick.jp/about-licence/

【マイコン基板】
Pico Bit RP2040

【スケッチの説明】
PWM出力でのフェード点灯(ゆっくり点灯)とフェード消灯(ゆっくり消灯)を行います。

【ライブラリ】
Raspberry Pi Pico / RP2040 > Generic RP2040

【準備】
GPIO0 -> 保護抵抗(200Ω) -> LED -> GND

【バージョン情報】
2023/4/30 : 新規
**********************************************************************/
#define PWM 0       //PWM 出力pin

void setup()
{
  pinMode(PWM , OUTPUT);
}

void loop()
{
  for(int i = 0; i < 256; i ++)
  {
    analogWrite(PWM, i);
    delay(2);
  }

  for(int i = 0; i < 256; i ++)
  {
    analogWrite(PWM, 255 - i);
    delay(2);
  }
}
結果

実装LEDがゆっくり点灯、ゆっくり消灯しました。

ADC

説明

ADCに入力された電圧を読み取りCOMに出力します。

電圧の入力にLOLIN32 Liteを使用します。
0~255(約3.3V) まで2msごとに1ずつ上昇し、255(約3.3V)~0までを2msごとに1ずつ下降する設定を繰り返します。

配線
Pico Bit RP2040配線LOLIN32 Lite
GPIO28(ADC)GPIO26(DAC)
GNDGND
スケッチ
/**********************************************************************
【ライセンスについて】
Copyright(c) 2022 by tamanegi
Released under the MIT license
'http://tamanegi.digick.jp/about-licence/

【マイコン基板】
Pico Bit RP2040

【スケッチの説明】
入力された電圧を読み取ります。

【ライブラリ】
 Raspberry Pi Pico/RP2040 > Generic RP2040

【準備】
マイコン基板 <-> LOLIN32 Lite
GPIO28(ADC)         <-> GPIO26(DAC)
GND                 <-> GND

【バージョン情報】
2023/4/30 : 新規
**********************************************************************/

#define ADC 28

void setup()
{
  Serial.begin(115200);
  pinMode(ADC, INPUT);
}

void loop()
{
  int iADC = 0;

  //外部から入力された電圧を読み取り、結果をCOMに出力します。
  iADC = analogRead(ADC);
  Serial.printf("(ADC) = %d\r\n", iADC);
  delay(2);
}
結果

入力した電圧を読み取った結果をグラフにしました。
電圧の変化は0V -> 3.3Vまでを約500msで上昇し、3.3V -> 0Vまで約500msで下降します。

結果はRaspberryPi Pico Purple version を掲載していますが、同等の結果が得られています。
直線的な波形でノイズもほとんどありません。

電圧と読み取り値の同期はできていませんが、参考程度に入力電圧を添付します。

UART

説明

UART0から読み取ったデータをUART1に送信します。
UART1から読み取ったデータをUART0に送信します。

配線
Pico Bit RP2040配線FT232RL(1)配線FT232RL(2)
GP0(UART0 TX)RX
GP1(UART0 RX)TX
GP4(UART1 TX)RX
GP5(UART1 RX)TX
スケッチ
/**********************************************************************
【ライセンスについて】
Copyright(c) 2022 by tamanegi
Released under the MIT license
'http://tamanegi.digick.jp/about-licence/

【マイコン基板】
Pico Bit RP2040

【スケッチの説明】
UART0 と UART1の通信をします。

UART0から受信した内容をUART1へ送信します。
UART1から受信した内容をUART0へ送信します。

【ライブラリ】
Raspberry Pi Pico/RP2040 > Generic RP2040

【準備】
UARTの送受信にFT232RLを使用します。
FT232RLはUART0用と、UART1用の2個使います。それぞれを(1), (2)と識別します。

Pico Bit RP2040 <-> FT232RL(1)
GPIO0 (UART0 TX) <-> RX
GP1O1 (UART0 RX) <-> TX

Pico Bit RP2040 <-> FT232RL(2)
GPIO4 (UART1 TX) <-> RX
GPIO5 (UART1 RX) <-> TX

【バージョン情報】
2023/4/30 : 新規
**********************************************************************/

void setup()
{
  //Serial は USB(COM)を使ったシリアル通信用オブジェクト
  //Serial1は UART0の通信オブジェクト
  //Serial2は UART1の通信オブジェクト

  Serial1.setTX(0);            //UART0はSerial1オブジェクトを使用します。
  Serial1.setRX(1);             //デフォルトではTX = 0, RX = 1

  Serial2.setTX(4);
  Serial2.setRX(5);

  Serial1.begin(115200);                 //SerialオブジェクトはUART0 (COM)
  Serial2.begin(115200);                //Serial1オブジェクトはUART1
}

void loop()
{
  if(Serial2.available() != 0)          //UART1にデータがあれば、読み取った内容をUART0に送信
  {
      Serial1.write(Serial2.read());
  }

  if(Serial1.available() != 0)           //UART0にデータがあれば、読み取った内容をUART1に送信
  {
      Serial2.write(Serial1.read());
  }
}
結果

結果はTeratermを2つ起動して確認します。
1つはUART0用(COM44で認識)で、もう一つはUART1用(COM13で認識)です。

UART0用のTeratermに入力した”tamanegi”が、UART1用のTeraterm画面に”tamanegi”と表示されました。
UART1用のTeratermに入力した”BLOG”が、UART0用のTeraterm画面に”BLOG”と表示されました。

I2C(SSD1306)

説明

I2Cを使ってSSD1306(OLED 0.96inch)モニタのサンプルを動作させます。
RP2040では、I2Cが2系統あります。
決められた中から任意のピンに信号を出力することができます。
本サンプルではピン設定の仕方と簡単な表示を行っています。
各I2C系統での設定可能なピンはサンプルを参照してください。

掲載以外の図形表示などのサンプルは以下のサンプルを参照してください。
ファイル(F) > スケッチ例 > Adafruit SSD1306 > ssd1306_128x64_i2c

配線

本サンプルはI2C0を使用します。
配線は以下の表のとおりです。

Pico Bit RP2040配線SSD1306(0.96inch)
3.3VVCC
GNDGND
GPIO1(I2C0 SCL)SCL
GPIO0(I2C0 SDA)SDA
[2023/4/10 配線間違い修正 SCL -> GPIO1, SDA -> GPIO0]
スケッチ
/**********************************************************************
【ライセンスについて】
Copyright(c) 2022 by tamanegi
Released under the MIT license
'http://tamanegi.digick.jp/about-licence/

【マイコン基板】
Pico Bit RP2040

【スケッチの説明】
SSD1306 OLEDの制御をします。
I2Cは I2C0とI2C1のどちらのサンプルも掲載しますが、
I2C1側はコメントアウトしますので、状況に応じてコメントを外してください。
※コメント検索 [I2C1の場合]

【ライブラリ】
Raspberry Pi Pico / RP2040 > Generic RP2040

【準備】
マイコン基板 <-> SSD1306
3V3             <-> VCC
GND             <-> GND
GPIO0(I2C0 SDA) <-> SDA
GPIO1(I2C0 SCL) <-> SCL

【バージョン情報】
2023/4/30 : 新規
**********************************************************************/

#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>


#define PIN_SDA 0
#define PIN_SCL 1

#define SCREEN_WIDTH 128                //解像度 128 x 64 で使用します。
#define SCREEN_HEIGHT 64                //SCREEN_HEIGHTは 32 に設定することができます。

#define OLED_RESET     -1               //使用しないので -1を設定する。
#define SCREEN_ADDRESS 0x3C             //I2Cアドレスは 0x3C

Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET);     //I2C0の場合
//Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire1, OLED_RESET);     //I2C1の場合

                                        
void setup()
{
  
  // //I2C0の場合
  Wire.setSDA(PIN_SDA);
  Wire.setSCL(PIN_SCL);

  //I2C1の場合
  // Wire1.setSDA(PIN_SDA);
  // Wire1.setSCL(PIN_SCL);


  if(!display.begin(SSD1306_SWITCHCAPVCC, SCREEN_ADDRESS)) {
    for(;;);
  }

  display.clearDisplay();               //何か表示されている場合に備えて表示クリア

  display.setTextSize(2);               //フォントサイズは2(番目に小さい)
  display.setTextColor(SSD1306_WHITE);  //色指定はできないが必要
  display.setCursor(20, 0);            //テキストの表示開始位置
  display.print(F("TAMANEGI"));         //表示文字列
  display.setCursor(15, 25);
  display.print(F("OLED 0.96"));
  display.setCursor(25, 45);
  display.print(F("SSD1306"));

  display.display();                    //バッファ転送(表示)
}

void loop()
{
}
結果

SSD1306のサンプルスケッチが動作しました。

SPI(ST7735)

説明

SPIを使ってST7735(LCD 1.8inch)モニタのサンプルを動作させます。

掲載以外の図形表示などのサンプルは以下のサンプルを参照してください。
ファイル(F) > スケッチ例 > Adafruit ST7735 and ST7789 Library > graphicstest

配線

本サンプルはSPI0を使用します。
配線は以下の表のとおりです。

Pico Bit RP2040 配線ST7735(1.8inch)
3.3VVCC
3.3VLED
GNDGND
GPIO1(SPI0 CS)CS
GPIO7Reset
GPIO8AO(DC)
GPIO3(SPI0 TX)SDA
GPIO2(SPI0 SCK)SCK
スケッチ
/**********************************************************************
【ライセンスについて】
Copyright(c) 2022 by tamanegi
Released under the MIT license
'http://tamanegi.digick.jp/about-licence/

【マイコン基板】
Pico Bit RP2040

【スケッチの説明】
ST7735 LCDの制御をします。
SPIは SPI0とSPI1のどちらのサンプルも掲載しますが、
SPI1側はコメントアウトしますので、状況に応じてコメントを外してください。
※コメント検索 [SPI1の場合]

【ライブラリ】
Raspberry Pi Pico / RP2040 > Generic RP2040
Adafruit ST7735 and ST7789 Library
Adafruit GFX Library

【準備】
マイコン基板 <-> ST7735
3V3               <-> VCC
GND               <-> GND
GPIO1(SPI0 CS)    <-> CS
GPIO7             <-> Reset
GPIO8             <-> AO
GPIO3(SPI0 MOSI)  <-> SDA
GPIO2(SPI0 SCK)   <-> SCK

【バージョン情報】
2023/4/30 : 新規
**********************************************************************/

#include <Adafruit_GFX.h> 
#include <Adafruit_ST7735.h>
#include <SPI.h>

//SPIピン定義
#define TFT_CS          1   // CS
#define TFT_RST         7   // Reset 
#define TFT_DC          8   // DC
#define TFT_MOSI        3   // MOSI
#define TFT_SCK         2   // SCK


//SPI0の場合
Adafruit_ST7735 tft = Adafruit_ST7735(&SPI, TFT_CS, TFT_DC, TFT_RST);
//SPI1の場合
//Adafruit_ST7735 tft = Adafruit_ST7735(&SPI1, TFT_CS, TFT_DC, TFT_RST);

void setup(void) 
{
  //SPI0の場合
  SPI.setTX(TFT_MOSI);
  SPI.setSCK(TFT_SCK);

  //SPI1の場合
  // SPI1.setTX(TFT_MOSI);
  // SPI1.setSCK(TFT_SCK);
  

  tft.initR(INITR_BLACKTAB);                  //Init ST7735S初期化
  
  tft.fillScreen(ST77XX_BLACK);               //背景の塗りつぶし

    //テキスト表示
  tft.setRotation(3);                         //画面回転
  tft.setTextSize(3);                         //サイズ

  tft.setCursor(0, 10);                       //カーソル位置                      
  tft.setTextColor(ST77XX_GREEN);             //緑
  tft.printf("TAMANEGI\n");

  tft.setCursor(0, 50);                       //カーソル位置                      
  tft.setTextSize(2);                         //サイズ
  tft.setTextColor(ST77XX_RED);               //赤
  tft.printf("1.8inch LCD\n");
  tft.setTextColor(ST77XX_YELLOW);            //黄
  tft.printf("Res=128 x 160\n");
  tft.setTextColor(ST77XX_BLUE);              //青
  tft.printf("ST7735\n");
}

void loop()
{
}
結果

ST7735のサンプルスケッチが動作しました。

ST7735 0.96inchとSDカードリーダからJPG画像を表示する記事

コメント

タイトルとURLをコピーしました